GED erhält Zuwendungsurkunde für GenSATiOn-Edge Projekt: Innovationen in Nordrhein-Westfalen

GED bei der Übergabe der NEXT.IN.NRW Zuwendungsurkunde

Winterscheid, [11.07.2024] – Am Mittwoch den 03.07.2024 nahm die GESELLSCHAFT FÜR ELEKTRONIK UND DESIGN mbH (#GED) gemeinsam mit weiteren Gewinnern des Wettbewerbs „NEXT.IN.NRW“ die Zuwendungsurkunde für das Projekt „GenSATiOn-Edge“ entgegen. Die feierliche Übergabe fand im 21. Stock des Wirtschaftsministeriums Nordrhein-Westfalen mit einem atemberaubenden Blick über Düsseldorf statt und wurde von Staatssekretärin Silke Krebs und dem Projektträger Jülich durchgeführt.

Innovationen made in Nordrhein-Westfalen

In den nächsten drei Jahren wird GED zusammen mit dem Fraunhofer Institut für Mikroelektronische Schaltungen und Systeme-IMS, der Hochschule Ruhr-West, R&R-Formentechnik und Formtec GmbH an der Entwicklung eines miniaturisierten Sensorsystems für generative KI für das selbstüberwachte und adaptive Training in industriellen IoT-Edge-Anwendungen arbeiten. Ein praktisches Beispiel für eine industrielle Anwendung ist die Verschleißmessung und -vorhersage optimaler Fräsparameter von Fräswerkzeugen direkt im Sensorknoten.

Projekt GenSATiOn-Edge: Ein Schritt in die Zukunft der industriellen IoT-Edge-Anwendungen

GED wird die Hard- und Software für dieses komplexe Sensorsystem entwickeln, das große Datenmengen wie Vibration und Temperatur vor Ort verarbeiten wird. „Unsere Aufgabe besteht darin, einen leistungsstarken, aber energieoptimierten Mikrocontroller zu entwickeln, der diese Daten effizient verarbeitet“, erklärteHanno Platz, Gründer und Geschäftsführer der GED

Das Projekt zielt darauf ab, die Verfahren des selbstüberwachten Lernens auf industrielle Sensorsysteme zu übertragen und sie an spezifische Gegebenheiten anzupassen. Eine der größten Herausforderungen ist es, Merkmale zu identifizieren, die zu erhöhtem Verschleiß während der Produktion führen. Hierbei greift Fraunhofer IMS auf Erfahrungen aus anderen Forschungsprojekten zurück, bei denen die Grundlagen zur Datenauswertung mittels KI bereits erfolgreich umgesetzt wurden.

Vorteile und Ziele des GenSATiOn-Edge Projekts

Das Ergebnis wird nicht nur die Produktionskosten senken, sondern auch eine CO2-Reduzierung von über 35% ermöglichen.

GED bedankt sich beim NRW-Ministerium und dem Projektträger Jülich für die Förderung und Unterstützung des GenSATiOn-Edge F&E Projektes.

NRW Ministerin Mona Neubaur

Fortschritte in der Miniaturisierung

Fotorealistisches, hochauflösendes Bild eines miniaturisierten Elektronikprojekts im medizinischen Bereich. (Miniaturisierung) Das Gerät ist auf einem Tisch in einer medizinischen Umgebung platziert.
3D Integration In An Electronic Device. The Image Should Feature A Small Circuit Board With Multiple Layer

Fortschritte in der Miniaturisierung: Wie GED die Elektronik kleiner und leistungsfähiger macht

Viele moderne und wettbewerbsfähige Elektronikprodukte benötigen mehr Funktionalität bei kleinerer Bauform. Die Miniaturisierung spielt in Branchen wie Automotive, Luftfahrt und Medizintechnik eine entscheidende Rolle. GED verfügt über 38 Jahre Erfahrung in der Entwicklung und dem Design von kompakten Elektronikbaugruppen und Modulen. Anwendungen für die Sensorik über HDI-Embedded bis Powerelektronik, z.B. für die Elektromobilität, sind unterschiedliche Spezialgebiete mit teils hohem 3D-Integrationsbedarf. Dieser Artikel gibt Ihnen einen Einblick in unsere neuesten Projekte in diesem spannenden und wichtigen Bereich der Elektrotechnik.

Grundlagen der Miniaturisierung

Miniaturisierung bezieht sich auf den Prozess, Elektronik in immer kleineren Formen zu entwickeln, ohne dabei die Leistung zu reduzieren. Für Branchen wie die Medizintechnik, die Luftfahrt und die Kommunikationstechnologie ist dies besonders kritisch. Kleinere Geräte bedeuten oft weniger Energieverbrauch, geringere Materialkosten und verbesserte Performance. GED hat sich in den letzten 15 Jahren gemeinsam in verschiedenen Forschungsprojekten mit namhaften Instituten zum Thema der IoT-Sensorik intensiv befasst. Dieses Wissen kommt auch unseren Kundenprojekten zugute. Wir entwickeln Technologien, die nicht nur kompakter, sondern auch effizienter und kostengünstiger sind.

Technische Herausforderungen und Lösungen

Die Miniaturisierung stellt zahlreiche technische Herausforderungen dar. Die erfahrenen GED-Designer nutzen Designmethoden geschickt, um Bauteile auf kleinstem Bauraum zu platzieren und setzen auf Simulationstools, um die Wärmeableitung, Signalintegrität und mechanische Stabilität optimal auszulegen. So hat GED bereits 1992 Mikrovias in einem Sensorprojekt verwendet, wo Sensor-Chips mit einem Pitch von nur 100 Mikrometern zum Einsatz kamen. Oder 2007 wurde von GED mit einem Leiterplattenhersteller eine Hochstromleiterplatte entwickelt, die Verbindungen von 200 Ampere als Kupferschienen integriert hat. GED nutzt neueste Materialien und fortschrittliche Fertigungstechniken der Aufbau- und Verbindungstechnik, kombiniert mit Wissen, Erfahrung und Kreativität.

Anwendungsbeispiele

Unsere Miniaturisierungsentwicklungen haben in einer Vielzahl von Produkten Anwendung gefunden. In einem Hearable-Designprojekt wurde auf einem fingernagelgroßen Gehäuse mit einem 10-Lagen-HDI-Starrflex-Multilayer die Elektronik in den 3D-Bauraum auf engstem Raum integriert. Die Lösung für die zunächst als unvorstellbar erscheinende Aufgabe basierte auf der GED-Designstrategie, den Schaltplan des Kunden in Zusammenarbeit mit den GED-Schaltungsentwicklern in mehreren Iterationen zu optimieren, das Gehäuse leicht anzupassen und mit den Fertigungspartnern die Designrules so abzustimmen, dass es noch sicher in großen Stückzahlen von 100.000 Stk. pro Jahr produziert werden kann. Aufgrund der engen Zusammenarbeit und der Erfahrung des GED-Teams wurde das Projekt in nur 10 Wochen erfolgreich durchgeführt und war beim ersten Produktionslauf funktionstüchtig.

.

In der Medizintechnik helfen kompakte, leistungsfähige Sensoren und Geräte, die Patientenüberwachung zu verbessern und gleichzeitig die Belastung für die Patienten zu minimieren. Für ein Projekt eines neuartigen Beatmungssensors mit fünf verschiedenen Sensoren wurde ein erster Demonstrator in nur drei Monaten entwickelt und hergestellt.

Die GED-Aufgabe: Design für eine Starrflexleiterplatte, die die Sensormodule und die GED-Module im 3D-Bauraum des kleinen Gerätes integriert. Auf der Basis eines Sensor-Modulbaukastens, der bei GED in einem Forschungsprojekt entwickelt wurde, konnte die komplette Hardwaregrundfunktion einfach realisiert werden. Die mechanische Konstruktion wurde entsprechend angepasst und die Entwicklung für die Treibersoftware für die Sensoren wurde von GED übernommen. Der Kunde konnte sein Gerät pünktlich auf der Messe präsentieren.

Fotorealistisches, hochauflösendes Bild eines miniaturisierten Elektronikprojekts im medizinischen Bereich. (Miniaturisierung) Das Gerät ist auf einem Tisch in einer medizinischen Umgebung platziert.

Zukunftsperspektiven

Die Zukunft der Digitalisierung treibt weiterhin die Miniaturisierung und 3D-Integration voran. Bei GED arbeiten wir kontinuierlich daran, die Grenzen dessen, was technisch möglich ist, zu erweitern. Unsere Entwicklungsabteilung prüft in Forschungsprojekten neue Materialien und Technologien, die es uns ermöglichen werden, noch kleinere und leistungsfähigere Elektronik zu entwickeln. Miniaturisierung ist mehr als nur eine technische Herausforderung; sie ist ein Wegbereiter für effizientere und innovativere Produkte. Bei GED sind wir stolz darauf, mit an der Spitze dieser Entwicklungen zu stehen und unseren Kunden die fortschrittlichsten Lösungen anzubieten.

Related Posts

Join Our Newsletter

Ausgeklügelte Lösung im Miniformat: GED SensorNode Systembaukasten

Ausgeklügelte Lösung im Miniformat: Systembaukasten GED SensorNode 

Eine schnelle und individuelle Entwicklung von „intelligenten Multisensoren“ für cyberphysische Systeme im Internet of Things (IoT) ist jetzt mit dem Baukastensystem „GED SensorNode“ möglich. GED hat in den letzten vier Jahren zusammen mit Partnern wie Fraunhofer IZM, TU Berlin, oder Schaeffler diese Lösung entwickelt, die neue Maßstäbe im Bereich der IoT-Sensorik für die Industrie 4.0 setzt.  

Der Baukasten für Sensorknoten von IoT-Industrieanwendungen ermöglicht eine multifunktionale und raumsparende individuelle Konfiguration von Funktionen und Bauform. In das miniaturisierte und hochintegrierte Messsystem lassen sich mehrere Sensoren, zum Beispiel für Temperatur und Luftfeuchtigkeit, sowie DMS-Kraftsensoren integrieren. Der leistungsstarke ARM3-Mikrocontroller mit integriertem Bluetooth-Funk (BLE) übernimmt die Sensorsteuerung und eine Sensordatenvorverarbeitung. Das integrierbare Energy Harvesting erfolgt z. B. über eine Solarzelle oder via induktiver Übertragung. Weitere Methoden sind adaptierbar und bereits in der intelligenten Powersteuerung vorbereitet.

Bild: Konzept des IoT-SensorNode von GED
Konzept des GED SensorNode

 

Durch Einsatz des 3D-Drucks lassen sich jetzt „smarte Multisensor-Lösungen“ in freier Formgebung realisieren. Dabei können Sensoren, Energy Harvesting und ein Akku inklusive der gesamten Elektronik und der Antenne in einem Gehäuse mit sehr kleinen Bauraumabmessungen integriert werden. Die komplette Elektronik für den Smart-Sensor ist auf Fingernagelgröße (20 x17 mm) miniaturisiert.

Freie Bauform durch Freiformkonzept

Bild: GED IoT-MultisensorNode mit Gehäuse in nur 40 x 20mm Baugröße
GED SensorNode mit Gehäuse in nur 40 x 20mm Baugröße

Ein großer Vorteil des GED SensorNode liegt darin, dass die Bauform an die Einbaubedingungen flexibel anpassbar ist. Da die Sensorelektronik eine sehr kleine Baugröße hat und keine Kabel für die Datenübertragung bzw. die Energieversorgung benötigt, lässt sich der preisgünstige Sensor optimal in der Maschine oder Anlage montieren. Durch ein Freiformkonzept lassen sich Kunststoffgehäuse kundenspezifisch umsetzen. Natürlich sind auch Metallgehäuse möglich, wie im Bild für einen Sensor für Backenfutter von Drehmaschinen, mit Kraftmessung und Drehzahlmessung.

Neue Einsatzgebiete

Neue Einsatzgebiete für die IoT-Sensorik liegen beispielsweise im Bereich des „Predictive Maintenance“. Hier überwachen Sensoren zeitgleich einen Verschleiß, so dass sich die Wartung effizient an den tatsächlichen Verschleiß anpassen lässt. Damit werden zum einen Maschinenstillstandzeiten erheblich reduziert sowie zum anderen unnötige, vorzeitige Wartungen erspart. Für die statistische Betrachtung von Verlaufsdaten sind bereits Filter im GED SensorNode implementiert, die etwa mittels Medianfilter oder Mittelwertbildung Funktionen bieten, die damit eine einfache Überwachung von Veränderungen ermöglichen.

Bild: Messdaten des DMS-Kraftsensors aus dem ADC mit und ohne Filterung (von oben nach unten: Median, Mittelwert, Rohdaten)
Messdaten des DMS-Kraftsensors aus dem ADC mit und ohne Filterung (von oben nach unten: Median, Mittelwert, Rohdaten)

Intelligente Multisensorik

Darüber hinaus besteht die Möglichkeit der multisensorischen Datenauswertung, die im Software-Konzept von GED ebenfalls implementiert ist. So ermöglichen zum Beispiel der Temperaturwert und der Frequenzwert eine Ableitung des Verschleißes von Lagern. Der GED IoT- SensorNode kann also durch den integrierten µController bereits Steuerungsfunktionen übernehmen. Das bedeutet: Es werden nicht mehrere einzelne Sensoren benötigt, deren Daten dann eine Recheneinheit mit Analogeingängen zur Umsetzung der Sensorsignale (SPS) auswertet. Dies übernimmt stattdessen eigenständig der „intelligente Multisensor“ in einem extrem kleinen Gehäuse zu sehr günstigen Kosten.

Oberfläche zur Konfiguration des GED SensorNode per BLE-Notifications

GED hat für die Konfiguration des Sensorknotens eigens eine Oberfläche programmiert, über die Anwender den Sensor sehr komfortabel konfigurieren können. Vom PC oder zukünftig auch Smartphone aus lassen sich die integrierten Sensoren via Bluetooth in sehr weitem Maß einstellen. So können Parameter wie die Genauigkeit bzw. Auflösung, die Anzahl der Messung je Zeiteinheit, Schwellen- und Alarmwerte und v. a. m. in einem Sensorprofil hinterlegt werden. Somit können Nutzer den Sensorknoten jederzeit energetisch optimal frei konfigurieren, um das Antwortverhalten möglichst ideal an die jeweilige Anwendung anzupassen. Die Konfiguration wird im nicht-flüchtigen Speicher des Sensorknotens gespeichert.

 

Bild: Konfiguration des Sensorknotens und Anzeige von Messdaten, hier des Kraftmess-Sensors, des Beschleunigungs-Sensors sowie der Temperatur im Sensorknoten.
Konfiguration des Sensorknotens und Anzeige von Messdaten, hier des Kraftmess-Sensors, des Beschleunigungs-Sensors sowie der Temperatur im Sensorknoten.

 

Über die sogenannten „BLE-Notifications“ kann das autarke Senden von neu eingetroffenen Messwerten als Datagramm aktiviert werden. Außerdem ist der Echtzeit-Export von Messdaten in eine CSV-Logdatei möglich.

Die Vorteile liegen auf der Hand:

•       Keine unnötigen Abfragen durch den Host/Gateway

•       Erhöhung des maximal möglichen Datendurchsatzes

•       Senkung des Energiebedarfs

GED bietet auf Basis des Baukastens den kompletten Service für die Entwicklung von Form- und Leistungs-angepassten IoT-Sensorknoten an.

Für die drei Funktionsebenen stehen fertige Schaltungsmodule zur Verfügung, mit der Möglichkeit unterschiedlichste Sensoren zu implementieren:

a.       Sensor Frontend

b.       Mikrocontroller und BLE-Funk

c.       Powering und Energy Harvesting

Ein Modul mit einem hochauflösenden ADC ermöglicht zum Beispiel die Implementierung von mehreren PT100 oder PT1000 Temperatursensoren oder Drucksensoren. Ein anderes Sensormodul hat einen kombinierte Kraftmesssensor für DMS-Brücken und einen Beschleunigungssensor. Eine Besonderheit: Die Verarbeitung der Signale der Dehnungsmessstreifen erfolgt in einem ASIC über ein spezielles Zeitmessverfahren (TDC), dass eine Auflösung von 24 Bit ermöglicht. Natürlich lassen sich auch digitale Sensoren per SPI- oder I2C-Bus integrieren.

Bild: IoT-Sensorknoten mit Funk und Energy-Harvesting-Schaltung, der zusammengefaltet die Größe eines Fingernagels aufweist (15 x 20mm)
IoT-Sensorknoten mit Funk und Energy-Harvesting-Schaltung, der zusammengefaltet die Größe eines Fingernagels aufweist (15 x 20mm)

 

Die Möglichkeiten, wie sich die Elektronik in kundenspezifische Bauformen integrieren lässt, werden in einem späteren Beitrag erklärt.

Ihr Ansprechpartner für den Service der GED IoT-SensorNodes ist GED-Geschäftsführer Hanno Platz.

 

 

Möchten Sie mehr wissen, haben Sie Fragen? Gern informieren wir Sie persönlich über den GED IoT-SensorNode!